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Abstract

Latency delays intentionally slow order execution at an exchange, often to protect market-makers

against latency arbitrage. We study informed trading in a fragmented market in which one ex-

change introduces a latency delay on market orders. Liquidity improves at the delayed exchange,

as informed investors emigrate to the conventional exchange, where liquidity worsens. In aggre-

gate, implementing a latency delay worsens total expected welfare. We find that the impact on

price discovery depends on the relative abundance of speculators. If the exchange with delay tech-

nology competes against a conventional exchange, it implements a delay only if it has sufficiently

low market share.
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I Introduction

Liquidity providers prefer to intermediate uninformed trades, as these trades are unlikely to

move prices against them. In a competitive market for order flow, many exchanges have intro-

duced market features to appeal directly to these traders. Exchanges try to attract uninformed

traders from other markets with innovations such as inverse pricing, dark trading, and retail order

segmentation facilities, advertising that these innovations discourage informed trading. Recently,

some exchanges have imposed latency delays—so-called “speed bumps”—as yet another way to

appeal to uninformed order flow. Measured on the order of milliseconds, and even microseconds,

latency delays extend the time between an order’s receipt at the exchange and its execution.1 In

this paper, we study the impact of introducing such a delay.

The impact of latency delays on liquidity remains controversial among industry stakeholders.

Exchanges advertise latency delays as a means of protecting market-makers from adverse selection

by high-frequency traders (HFTs) who “snipe” stale quotes before market-makers can update them;

exchanges argue that these savings will ultimately pass on to investors through a narrower spread.2

Opponents claim that delays create an uneven playing field by allowing market-makers to “fade”

quotes ahead of orders, executing them at worse prices than those available at order submission.3

In our model, these behaviors arise endogenously: a latency delay induces market-makers to quote

a better spread, but orders may be executed at a worse price if the arrival of information induces a

quote update before an order is filled.

We construct a three-period model of informed trading in a fragmented market. We interpret

private information as a fleeting arbitrage opportunity that becomes publicly available to all market

participants in the second period. Some traders, denoted as speculators, may pay a cost to acquire

the private information in period one. Our interpretation of private information is similar to the

1See Appendix VII.B for detailed descriptions of latency delay mechanics as implemented in practice.
2For one example see “Regulators Protect High-Frequency Traders, Ignore Investors” in Forbes:

https://www.forbes.com/sites/jaredmeyer/2016/02/23/sec-should-stand-up-for-
small-investors/

3For one example see “Canada’s New Market Model Conundrum” by Doug Clark at ITG: http://www.itg.
com/marketing/ITG_WP_Clark_Alpah_Conundrum_20150914.pdf
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latency arbitrage phenomenon (e.g., between New York and Chicago) studied in Budish, Cramton,

and Shim (2015). Traders arrive sequentially to trade one unit of a risky security by submitting

an order to one of three venues: i) a standard exchange, which fills orders upon receipt in period

one, ii) a delayed exchange that imposes a latency delay between order receipt and execution such

that orders may fill in period two with some probability, or iii) an off-exchange internalizer that

fills orders in period two.4 Any order filled in period two is filled only after news of the arbitrage

opportunity is made public and impounded into prices.5 In our model, speculators are motivated by

information rents, while liquidity investors seek to minimize trading costs. In addition to paying

the (half-)spread, liquidity investors face heterogeneous delay costs similar to Zhu (2014).

Exchanges have implemented latency delays of both fixed (e.g., IEX) and random lengths (e.g.,

TMX Alpha). By modeling a latency delay in terms of the probability that an information advan-

tage is lost, our model reflects both prominent delay implementations. In practice, the difference

between the time when a speculator acquires information and submits an order, and that when a

market-maker learns of the latency arbitrage and prices it into its quotes (i.e., the time at which the

private information becomes public) is random. Our model is well-suited to analyzing delays of

both fixed and random lengths: in both cases, the latency period simply adds a fixed or random de-

lay to the already random length of time for which information remains private, and during which

quotes are effectively “stale.”

In equilibrium, the latency delay increases execution risk at the delayed exchange, segmenting

informed order flow to the standard exchange. As a result, liquidity at the conventional exchange

worsens via the widening of the bid-ask spread, while delayed exchange liquidity improves. As

informed speculators concentrate at the standard exchange, competition for information rents in-

4We use the off-exchange internalizer as a stylized representation for trading venues with slower execution rates
(relative to the nature of latency arbitrage). The internalizer in our model functions similarly to a conventional mid-
point crossing network (e.g., Sigma X’s Reference Price Book), or a delayed midpoint crossing network (e.g., Intelli-
gentCross, which sets minimum resting times and time-delayed execution).

5In practice, exchanges (e.g., IEX) that impose a delay between receipt and execution may also delay information
transmission on completed trades. We focus on delay to incoming orders, both because it is universal among delayed
exchanges and because it offers a lower bound for the segmenting effects of a delayed exchange. We posit that an
exchange that also delays information transmission would only be more dissuasive to informed speculators relying on
inter-market arbitrage, as they would require additional time to confirm order execution.
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tensifies, reducing overall information acquisition by speculators. However, the reduction in ad-

verse selection at the delayed exchange attracts the most relatively latency-sensitive uninformed

order flow from the internalizer, leading to an increase in on-exchange volume. The net effect is

an increase in total exchange-traded volume.

Given the mixed effects on liquidity across markets, we proceed to examine the overall effect

of implementing a latency delay on the welfare of all market participants. We use a measure that

reflects allocative efficiency, by taking expectation over the gains from trade that arise from the

buyer and seller profit functions. We show that welfare simplifies to two costs: per-trade expected

delay costs paid by liquidity investors, and information acquisition costs paid by speculators. We

find that speculators commit fewer average resources to information acquisition in the presence of

a delayed exchange, but that liquidity investors incur higher average delay costs. The increased

delay costs outweigh the diminished information acquisition costs, such that the introduction of a

delayed exchange worsens investor welfare.

Including private information and endogenous information acquisition in our model affords

us the opportunity to study the contribution of a latency delay to price discovery. Using a root

mean-squared proportional pricing error, we find that the ratio of speculators relative to liquidity

investors plays an important role: the introduction of a delayed exchange worsens price discovery

for securities with a relatively large speculator presence. The increased competition for information

rents among relatively many informed speculators increases the expected price impact of informed

speculators, but this effect is dominated by the countervailing reduction in information acquisition,

ultimately worsening price discovery. If the relative number of speculators is low, the introduction

of a short delay may improve price discovery, as the relatively many liquidity investors may suffi-

ciently absorb the segmentation of informed order flow to the non-delayed exchange such that the

increase in expected price impact dominates.

Since price discovery may improve or worsen depending on the length of delay implemented

by the exchange, we examine the decision of an exchange to implement a delay. We assume that

the exchange maximizes profits through volume. In our investigation, we consider two market
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organization environments: i) a stand-alone delayed exchange that competes with a standard ex-

change (e.g., IEX) and ii) a delayed exchange that is a subsidiary of a standard exchange (e.g.,

TSX Alpha, NYSE American). We predict that a stand-alone exchange whose market share is

sufficiently lower than that of a competing standard exchange will implement a delay. Such a

stand-alone exchange selects a delay that balances investors’ preference for liquidity and latency

sensitivity to draw order flow from both the standard exchange and the off-exchange internalizer;

as a result, informed speculators may not fully segment from the delayed exchange. A subsidiary

exchange instead maximizes total exchange-traded volume across both exchanges. To do so, it is

optimal to impose a maximal delay so that the delayed exchange effectively assumes the role of

an off-exchange internalizer, attracting latency-insensitive liquidity investors to trade on-exchange.

Here, the standard and delayed exchange jointly capture all volume in the market.

Related Literature. To our knowledge, our paper is the first to study latency delays as an order

flow segmentation mechanism in a fragmented market. Existing models of latency delays focus

on single-venue markets (e.g., Budish, Cramton, and Shim (2015), Rojcek and Ziegler (2016),

Aldrich and Friedman (2019), and Aoyagi (2019)) or fragmented markets with identical delays.

Closest to our work, Baldauf and Mollner (2018) analyze a fragmented market whose exchanges

all impose an identical latency delay from which only limit order cancellations are exempt. As

in our predictions on liquidity, the authors find that the quoted spread narrows when an exchange

introduces a delay, an effect driven by the reduction in information acquisition. Complementary

to Baldauf and Mollner (2018), we study the interaction between exchanges with delays and those

without, providing a discussion on the migration of traders between exchanges; moreover, we

examine a delayed exchange’s optimal choice of delay magnitude.

Our work contributes to the broad literature on market segmentation, which includes (but is

not limited to) studies on dark pools (e.g., Zhu (2014), and Menkveld, Yueshen, and Zhu (2017)),

access fees (e.g., Colliard and Foucault (2012), and Malinova and Park (2015)), and broker order

routing decisions (e.g., Battalio, Corwin, and Jennings (2016), and Cimon (2019)). Empirical work

shows that fragmented markets improve liquidity (Foucault and Menkveld (2008)) and efficiency
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(O’Hara and Ye (2011)). Market segmentation may also lead to “cream skimming”, as alternative

exchanges are able to divert desirable orders from primary exchanges. Empirical evidence on the

topic is mixed (see e.g., Battalio (1997), and Hatheway, Kwan, and Zheng (2017)). In our paper,

we predict that latency delays do play an order segmentation role, and may also allow for cream

skimming, as delayed exchanges are able to capture a larger fraction of uninformed orders.

Our paper also relates to the literature on HFT, as we provide new predictions toward the im-

pact that latency delays may have on the relationship between high-frequency (HF) arbitrageurs

and HF liquidity providers, and consequently, their impact on liquidity and price discovery. Em-

pirical evidence suggests that HF liquidity providers may improve liquidity (see e.g., Brogaard,

Hagströmer, Nordén, and Riordan (2015), Subrahmanyam and Zheng (2015), and Brogaard and

Garriott (2018)), whereas HF liquidity demanders may increase transaction costs (Chakrabarty,

Jain, Shkilko, and Sokolov (2014), ?). Further evidence suggests that HFTs may improve price

discovery through both liquidity supply (Conrad, Wahal, and Xiang (2015), and Brogaard, Hen-

dershott, and Riordan (2019)) and demand (Brogaard, Hendershott, and Riordan (2014)). Carrion

(2013) finds that liquidity demanders may also improve market efficiency.

Theoretical studies on HFTs have examined their roles in modern markets, including: market

making (Jovanovic and Menkveld (2015)), arbitrage (Wah and Wellman (2013)), and the incorpo-

ration of new information (Biais, Foucault, and Moinas (2015)).6 Close to our paper, Menkveld and

Zoican (2017) and Pagnotta and Philippon (2018) model the effects of exchange speed. Menkveld

and Zoican (2017) focus on the processing latency within an exchange, versus latency in reaching

the exchange. Pagnotta and Philippon (2018) focus on competition in exchange speed investment.

We complement this body of work by examining a fragmented market where delays are asymmet-

ric across exchanges and order types.

Our paper addresses the argument of latency delay proponents that delays may curb the “preda-

tory” HFT practice of cross-market latency arbitrage. Critics have suggested that latency delays

may also lead to quote fading. Existing evidence is mixed, as Malinova and Park (2016) document

6See Angel, Harris, and Spatt (2011), O’Hara (2015), and Menkveld (2016) for extensive surveys on work related
to HFT.
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evidence of predatory quote fading behavior by HFTs, while Latza, Marsh, and Payne (2014) find

no evidence.7 As these behaviours relate to latency delays, the evidence is also mixed. In studies

of the latency delay implementation by Canadian exchange TMX Alpha, Chen, Foley, Goldstein,

and Ruf (2017) find that liquidity demanders are able to access a lower proportion of posted liq-

uidity following the introduction of a delay, whereas Anderson, Andrews, Devani, Mueller, and

Walton (2018) find that market-wide liquidity does not deteriorate. In our paper, we abstract from

arbitrary quote fading by assuming that market-makers update their quotes as a rational response

to new information.

Finally, we acknowledge that our model abstracts from the phenomenon of queue-jumping,

whereby liquidity providers circumvent time priority at one market by posting a limit order to

another market at an economically insignificant price improvement. Because our model assumes

competitive liquidity provision by the market-maker and limits the order placement strategy of

speculators and liquidity investors to market orders only, there is no incentive for the market-maker

to improve upon quotes that yield zero expected profits in equilibrium. For a theoretical analysis

of queue-jumping in a fragmented market, we refer the reader to Buti, Consonni, Rindi, Wen, and

Werner (2015), who study an environment in which a public limit order book with a positive tick

size operates alongside a venue that permits price improvement on a finer grid than the limit order

book.

II The Model

Security. There is a single risky security with a random payoff v. v is equal to v0−σ or v0 +σ,

with equal probability, where σ ∈ (0, 1]. v is unknown by the public at t = 1, but is publicly

announced at the beginning of t = 2. The asset is liquidated at t = 3.

Market Organization. There are two exchanges, Fast and Slow, and an off-exchange inter-

nalizer. Exchanges Fast and Slow operate limit order books, where posted limit orders are visible

7In related work, Gai, Yao, and Ye (2013) find evidence that high-frequency traders engage in the strategy known
as “quote stuffing”, which we do not address in this paper.
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to all market participants. Market orders sent to Exchange Fast (the “standard exchange”) at t = 1

fill immediately upon receipt. Market orders sent to Exchange Slow (the “delayed exchange”) are

subject to a random delay. With probability δ ∈ (0, 1) an order sent to Exchange Slow at t = 1

is delayed, to fill only after the public announcement of v at t = 2. Otherwise, the order is filled

immediately at t = 1. Limit orders submitted to Exchange Slow are not subject to the delay.8 The

internalizer fills market orders that it receives with liquidity provided by a market-maker. These

orders fill after the public announcement of v.

We define the latency delay at Exchange Slow in probabilistic terms to reflect the impact of

the delay relative to the fleeting nature of an arbitrage opportunity. In practice, an exchange can

impose a latency delay whose length is deterministic or random. Because traders competing for

arbitrage opportunities across markets have a distribution of reaction times (e.g., different hard-

ware, algorithms and other software, etc.,), events may reveal mispricing to liquidity providers

before a trader’s market order clears the delay and fills at the intended quote. As these reac-

tion times are uncertain, the combined effect of latency differences between trader actions and an

exchange-imposed latency delay leads a trader to interpret the event of a price change before an

order executes as probabilistic. We illustrate the translation of a deterministic exchange latency

delay into an interpretation in δ in Panel A of Figure 1. In this case (e.g., IEX), a deterministic

delay slows the distribution of reaction times by a fixed amount, increasing the probability that liq-

uidity providers move first. A random latency delay instead slows some orders for longer periods

than others. Panel B of Figure 1 illustrates this interpretation, representing the delays currently

implemented by Canadian venues TMX Alpha and Aequitas Neo.

We present the following simplified example to illustrate the impact of a latency delay on an

arbitrageur’s decision to submit an order to a delayed exchange. Consider an arbitrage opportunity

that is exploitable by some market participants with an uncertain window of 5-10 milliseconds.

Here, a latency delay of less than 5 milliseconds is unlikely to deter arbitrageurs from picking off

8Exchanges with latency delays have, generally, exempted liquidity providers from the latency delay. For example,
IEX will update pegged orders in response to external factors (e.g., orders pegged to the midpoint, National Best Bid-
Offer (NBBO), or their ‘discretionary peg’). TMX Alpha requires that liquidity-providing orders meet a minimum
size requirement bypass the delay. In general, it is insufficient to merely submit a limit order to bypass the delay.
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stale quotes (δ = 0), while a delay of greater than 10 milliseconds will negate the opportunity

entirely (δ = 1). A delay between 5-10 milliseconds will reduce the pick-off risk at the delayed

exchange, but not eliminate it (δ ∈ (0, 1)). The internalizer in our model effectively operates as

a delayed venue that employs the most extreme delay, such that arbitrage is not possible via the

internalizer.9

Market-Maker. A single risk-neutral market-maker supplies liquidity to all venues: Fast,

Slow, and the internalizer. At each venue, the market-maker prices its limit orders competitively

such that it earns zero expected profits at each exchange (i.e., in the manner of Glosten and Mil-

grom (1985)).10 The market-maker has zero latency, and thus is able to place (and update) limit

orders on both exchanges at the beginning of periods t = 1 and t = 2, before other investors place

their orders. The market-maker receives only the public signal v0 at the beginning of t = 0. Upon

the announcement of v at t = 2, the market-maker updates its t = 1 limit orders to the public value

such that askFast
2 = askSlow

2 = bidFast
2 = bidSlow

2 = v. This update happens before orders that have

been delayed at Exchange Slow are able to reach the exchange. Moreover, because all trades at

the internalizer occur at t = 2 following the announcement of v, the market-maker prices all limit

orders sent to the internalizer at v.

Market-Maker Payoff. As the market-maker sets prices at both exchanges such that its ex-

pected payoff from a buy or sell order is zero, its profit function is written as follows. We denote

the market-maker with the short-hand ‘MM ’.

πFast
MM(askFast

1 ; Buy at Fast at t=1) = askFast
1 − E[v | Buy at Fast at t=1] = 0,(1)

πSlow
MM(askSlow

1 ; Buy at Slow at t=1) = askSlow
1 − E[v | Buy at Slow at t=1] = 0.(2)

Finally, as the market-maker prices all limit orders at the (public) true value v in t = 2, the

9Menkveld, Yueshen, and Zhu (2017) find evidence that midpoint-crossing dark pools offer the lowest immediacy,
when compared to other displayed and non-midpoint off-exchange venues.

10We assume that a single market-maker prices competitively within-exchange to abstract from the Bertrand com-
petition liquidity provision game that arises from multiple market-makers competing at each exchange. We assume
that the market-maker earns zero profit at each exchange to eliminate the case in which the market-maker earns zero
expected profits through a loss at one exchange and positive profits at the other, a case that would not arise in an
environment where multiple market-makers compete.
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market-maker earns zero profit on all trades at the internalizer.

Investors. There is a unit mass of risk-neutral investors. At t = 0, an investor arrives at the

market to trade a single unit of the security. The investor is either a speculator with probabil-

ity µ > 0, or a liquidity investor. Speculators are endowed with an information acquisition cost

γi ∼ U[0, 1] which they can pay upon arrival at t = 0 to perfectly learn the random payoff v.

We refer to those who acquire information as “informed speculators,” and their mass is denoted

µI ∈ (0, µ]. When information events are interpreted as fleeting arbitrage opportunities, specu-

lators who acquire information can be viewed as acquiring the necessary technology to exploit

these opportunities. Speculators who do not acquire information are classified as “uninformed

speculators.”

With probability (1− µ), a liquidity investor arrives and is a buyer or seller with equal proba-

bility. Liquidity investors have no private information about v and cannot acquire it, but they are

endowed with liquidity needs that motivate them to trade. Liquidity investors also face a cost to

trade following an adverse price movement. This cost ci is proportional to the innovation such

that ci = kλiσ. k ∈ (0,∞) is a universal scaling parameter of the innovation, while λi ∼ U [0, 1]

models an investor’s private sensitivity to delay. Introducing a universal scaling parameter k allows

us to normalize the distribution of the latency sensitivity parameter λi to the unit interval, which

aids in the interpretation of our results. The liquidity investor delay cost is similar to that of Zhu

(2014), which may represent a number of unmodelled factors, such as risk aversion or recapitaliza-

tion costs. Both examples represent costs that liquidity investors face when the price moves away

from them, but not if it moves in their favour.11 Alternatively, a liquidity investor can elect not to

trade, and incur a non-participation cost K ∈ (σ,∞). We assume that the cost of not trading is

high enough that it induces liquidity investors to trade (i.e., K > max{ ci
2
}).

An investor sends a market order to the venue that will maximize expected profits. Speculators

do so by capitalizing on informational advantage, whereas liquidity investors maximize profits by

minimizing their total trading costs. An investor i may submit a single market order at t = 1 or not

11We concede that a price movement can occur in a beneficial direction, and that the investor could earn a return
on the proceeds. We assume that this cost exceeds the return, and normalize the return to zero.
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trade.12 An investor who submits a market order at t = 1 may select either one of the exchanges, or

may send the order to the off-exchange internalizer. We assume that once an investor’s order fills,

any information acquired by the investor becomes public immediately, before any other trades

occur. Finally, the structure of the model is known to all market participants. We illustrate the

timing of the model in Figure 2.

Investor Payoffs. The expected payoff to an investor who submits a buy order at t = 1 is given

by their knowledge of the true value of v minus the price paid and any information acquisition or

delay costs incurred. Because the market-maker sets bid and ask prices competitively, conditioning

on public information and the expected adverse selection of an incoming investor, any market order

filled at t = 1 thus pays a premium above the public value known at t = 1. Hence, speculators who

do not acquire information will not trade, as uninformed speculators know only the public value.

Consequently, only two types of traders send orders at t = 1: informed speculators, and liquidity

investors.

We denote liquidity investors as L, informed speculators as I , and uninformed speculators as

U . The expected payoffs to a liquidity investor L from submitting a buy order to either Exchange

j ∈ {Fast,Slow}, or the internalizer (Int) are given by:

πFast
L (λi; Buy at t=1) = v0 − askFast

1 ,(3)

πSlow
L (λi; Buy at t=1) = (1− δ)× (v0 − askSlow

1 ) + δ ×
(
v − v − kλiσ

2

)
,(4)

πInt
L (ci; Buy at t=1) = (v − v)− kλiσ

2
.(5)

12We make the single-order assumption to simplify the model, but its impact on our qualitative results is motivated
by unmodelled trading costs (e.g., message costs) that, we argue, would prevent investors from regularly sending
orders from which they expect only a very small probability of a non-zero payoff. We provide a detailed explanation
in section VII.C of the Appendix.
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Similarly, the payoffs to an informed speculator I are given by:

πFast
I (γi; Buy at t=1) = v − askFast

1 − γi,(6)

πSlow
I (γi; Buy at t=1) = (1− δ)× (v − askSlow

1 ) + δ × (v − v)− γi,(7)

πInt
I (γi; Buy at t=1) = (v − v)− γi = −γi < 0.(8)

Finally, the payoff to an uninformed speculator, who does not trade, is given by:

πU(γi; no trade) = 0.(9)

Seller payoffs are similarly defined. The scaling factor of 1/2 in the delay cost of πL reflects the fact

that the asymmetric cost is incurred only if the price moves away from the liquidity investor, which

occurs with probability 1/2. An informed speculator who submits an order to the internalizer (or

does not trade) recovers no value from the information, and pays acquisition cost −γi. A liquidity

investor who submits a buy order to the internalizer purchases the asset at its true value v and pays

the delay cost with probability 1/2.

III Equilibrium

We begin by solving the model with two non-delayed exchanges to establish a benchmark

against which to compare the setting in which Exchange Slow imposes a delay δ > 0. We define

our benchmark in this way—rather than as a single competitive exchange—to disentangle the

impact of fragmentation. We maintain the exchange labeling convention Fast and Slow throughout

the paper for consistency, acknowledging that in the benchmark case, both exchanges are identical.

In both the benchmark and delayed exchange settings, we search for a weak Perfect Bayesian

equilibrium in which the market-maker chooses a quoting strategy that yields zero expected profits

at each venue, and investors choose order submission strategies that maximize their profits. We

also focus on equilibria where both exchanges receive positive order flow.13 Because the set-up of

13While we allow for separating equilibria in which informed speculators and liquidity investors cluster at different
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our model is symmetric for buyers and sellers, we focus our exposition on the decisions of buyers

without loss of generality.

III.A Identical Fragmented Markets (No Latency Delay)

If no exchange imposes a processing delay (δ = 0), investors’ payoffs simplify considerably:

all orders submitted to an exchange immediately fill at the posted quote. Informed speculator and

liquidity investor payoffs to trading on Exchange j reduce to:

πjI(γi; Buy at t=1) = v − askj1 − γi,(10)

πjL(λi; Buy at t=1) = v0 − askj1.(11)

Because a market order fills immediately at the posted quote, a liquidity investor’s latency sensi-

tivity λi does not enter into their on-exchange payoff; instead, λi enters through the venue choice

decision, which weighs immediate execution at an exchange against delayed execution at the in-

ternalizer.

The market-maker populates the limit order books at Exchanges Fast and Slow, taking into

account the expected order placement strategies by investors. The market-maker quotes compet-

itively, pricing the expected adverse selection of an incoming buy (sell) order into the ask (bid)

price at t = 1 on each exchange. We denote the ask prices at Exchanges Fast and Slow at t = 1 as

askFast
1 and askSlow

1 , respectively, and write them below:

askFast
1 = E[v | Buy at Exchange Fast],(12)

askSlow
1 = E[v | Buy at Exchange Slow].(13)

Prices bidFast
1 and bidSlow

1 are analogously determined using the symmetry of buyers and sellers.

Upon the announcement of v at t = 2, the market-maker updates its buy orders on both exchanges

exchanges, the no-trade theorem of Milgrom and Stokey (1982) demonstrates why such an equilibrium cannot exist: a
separating equilibrium of this type would perfectly reveal an informed speculator’s private information to the market-
maker, incentivizing the informed speculator to deviate to the exchange at which the liquidity investors participate, to
hide amongst the uninformed order flow.
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to askFast
2 = askSlow

2 = bidFast
2 = bidSlow

2 = v.

Each investor makes two decisions: i) whether to participate in the market at t = 1, and if

so, ii) to which venue to submit an order. The participation decision for speculators depends on

the profitability of private information relative to their private information acquisition cost γi. A

participating speculator decides on a venue choice strategy to maximize profit. Similarly, liquidity

investors receive their delay cost c(λi) at t = 0 and weigh it against the cost of not trading K. A

liquidity investor electing to trade chooses to which venue to send an order.

We characterize these decisions via backward induction. First, we characterize the profit from

trading at the internalizer, which delays orders with certainty. At t = 2, a speculator (informed and

otherwise) whose order is delayed has no information advantage, and thus their expected profit is

zero. A liquidity investor who submits an order to the internalizer in t = 1 pays an average delay

cost of ci
2

= kλiσ
2

. Hence, it is always optimal for a liquidity investor to submit an order at t = 1,

as the cost to abstaining K > max{kλiσ
2
}.

At t = 1, speculators who do not acquire information at t = 0 do not trade. A speculator

who acquires knowledge of v, now knows that delaying an order until period t = 2 (i.e., via the

internalizer) is unprofitable, so the informed speculator chooses an order submission strategy over

Exchanges Fast and Slow. We denote the probability with which an informed speculator submits

an order to Exchange Fast as β ∈ (0, 1); otherwise, the investor submits an order to Exchange

Slow. Similarly, a liquidity investor who chooses to trade at an exchange in t = 1 submits an order

to Exchange Fast with probability α ∈ (0, 1), and Exchange Slow otherwise. A buyer’s order

placement strategy over the two exchanges at t = 1 is characterized by:

Informed Buyer:
{
β | πFast

I (Buy t=1) = πSlow
I (Buy t=1) ⇐⇒ askFast

1 = askSlow
1

}
,(14)

Liquidity Buyer:
{
α | πFast

L (Buy t=1) = πSlow
L (Buy t=1) ⇐⇒ askFast

1 = askSlow
1

}
.(15)

We note here that because both exchanges are identical, γi and λi do not directly impact an in-

vestor’s venue choice; instead, an investor chooses a venue based on the available quotes. Hence,

if quotes are not equal across the exchanges at t = 1, then investors pool at the best-priced ex-
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change, which cannot be an equilibrium, as either: i) the high-priced exchange would have no

volume, violating the equilibrium assumption of positive order flow at both exchanges, or ii) the

high-priced exchange would improve its prices to attract order flow.

Given α and β, and prices askFast
1 and askSlow

1 such that askFast
1 = askSlow

1 , speculators and liq-

uidity investors make participation decisions at t = 0 that determine: i) the profitability threshold

for information acquisition, denoted γ̄, below which they acquire information, and ii) the latency

sensitivity threshold λ above which liquidity investors trade on exchange (rather than at the in-

ternalizer). To find γ̄, we find the highest value of γi at which a speculator earns a non-negative

expected profit from becoming informed:

γ̄ = max
{
v − askFast

1 , v − askSlow
1

}
= v −min

{
askFast

1 , askSlow
1

}
= v − askFast

1 .(16)

Hence, any speculator with γi ≤ γ̄ will acquire information, and the mass of informed speculators

at t = 1 is equal to: µI = µPr (γi ≤ γ̄). Similarly, we characterize the latency sensitivity threshold

above which a liquidity investor will trade on-exchange λ by comparing the total cost of trading

via exchange to the cost of trading at the internalizer:

min
{
πFast
L (λ), πSlow

L (λ)
}

= πInt
L (λ) ⇐⇒ λ =

2

kσ
min

{
askFast

1 , askSlow
1

}
=

2

kσ
askFast

1 .(17)

Therefore, a liquidity investor with a delay cost λi ≥ λ chooses to trade at an exchange in t = 1.

The probability that such a liquidity investor arrives is (1− µ)Pr (λi ≥ λ).

Given the participation and venue choice strategies of informed speculators and liquidity in-

vestors, we use Bayes’ Rule to characterize the period 1 ask prices quoted by the market-maker at
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Exchanges Fast and Slow (sell prices bidFast
1 and bidSlow

1 are symmetric about v0).

askFast
1 = v0 +

Pr(informed trade at Fast)
Pr(trade at Fast)

× σ = v0 +
µγ̄βσ

µγ̄β + (1− µ)αPr(λi ≥ λ)
,

(18)

askSlow
1 = v0 +

Pr(informed trade at Slow)

Pr(trade at Slow)
× σ = v0 +

µγ̄(1− β)σ

µγ̄(1− β) + (1− µ)(1− α)Pr(λi ≥ λ)
.

(19)

Finally, the existence of an equilibrium requires that liquidity investors with maximum latency

sensitivity (i.e., λi = 1) have sufficiently high expected delay costs c = kσ/2 such that they strictly

prefer immediate execution. This assumption assures that both exchanges have non-zero liquidity

investor participation, as informed speculators will not trade at venues where no liquidity investors

participate (see e.g., Milgrom and Stokey (1982)). We denote this value as k. Formally, we assume

the following.

Assumption 1 (Liquidity Investor Immediacy) k > k = 4((1−µ)+2µσ)
(1−µ)+4µσ

.

For the identical exchange case, Assumption 1 is stronger than necessary (we require only that

k > 2), as it reflects the level of k required to form an equilibrium in a market where one exchange

imposes a delay. We have introduced it here for ease of exposition, to maintain consistency with

Subsection III.B.

In summary, an equilibrium in our model is characterized by: (i) investor participation values,

γ̄ and λ; (ii) investor venue strategies, α and β; and (iii) market-maker quotes at t = 1 for each ex-

change j ∈ {Fast,Slow}, askj1 and bidj1. These values solve the investor venue choice indifference

conditions (14)-(15), participation conditions (16)-(17), and the market-maker quoting strategy

(18)-(19). In the existence theorem to follow, we denote the equilibrium values of the benchmark

case with the subscript ‘B’.

Theorem 1 (Identical Fragmented Markets) Let δ = 0 and k satisfy Assumption 1. Then for any

βB ∈ (0, 1), there exists a unique equilibrium consisting of participation constraints γ̄B ∈ (0, 1),
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λB ∈ [0, 1] that solve (16)-(17), prices askFast
1,B , askSlow

1,B , bidFast
1,B and bidSlow

1,B that satisfy (18)-(19), and

αB ∈ (0, 1) that solves (14)-(15) such that αB = βB.

Theorem 1 illustrates that, in equilibrium, identical fragmented markets may co-exist, and that

they need not attract the same level of order flow despite offering identical prices. For example, in

an equilibrium where αB = βB = 3/4, αB and βB cancel out of the pricing equations (18)-(19)

to yield askFast
1,B = askSlow

1,B , despite Exchange Fast capturing three times the order flow of Exchange

Slow. We summarize this in the Corollary below.

Corollary 1 (Equilibrium Prices) In equilibrium, ask and bid prices at t = 1 are equal to askFast
1,B =

askSlow
1,B = v0 + µγ̄Bσ

µγ̄B+(1−µ)(1−λB)
and bidFast

1,B = bidSlow
1,B = v0 − µγ̄Bσ

µγ̄B+(1−µ)(1−λB)
.

III.B Slow Exchange Imposes a Latency Delay

Assume now that Exchange Slow imposes a random processing delay such that market orders

sent to Exchange Slow fill after v is publicly announced at t = 2 with probability δ ∈ (0, 1). The

processing delay impacts payoffs to speculators and liquidity investors differently. A speculator

receives the following payoffs to trading at Exchanges Fast and Slow:

πFast
I (γi; Buy at t=1) = v − askFast

1 − γi,(20)

πSlow
I (γi; Buy at t=1) = (1− δ)×

(
v − askSlow

1

)
− γi.(21)

A liquidity investor’s payoff functions simplify to:

πFast
L (ci; Buy at t=1) = v0 − askFast

1 ,(22)

πSlow
L (ci; Buy at t=1) = (1− δ)× (v0 − askSlow

1 )− δ × kλiσ

2
,(23)

πInt
L (ci; Buy at t=1) = −kλiσ

2
.(24)

When Exchange Slow imposes a processing delay, an investor weighs the cost of trading on

Exchange Fast immediately, against the possibility of: a) losing their information if they are in-
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formed, or b) paying a delay cost if they are a liquidity investor. An investor’s order placement

strategy has two equilibrium conditions: i) a participation constraint (PC), and ii) an indifference

condition (IC) between orders to Exchanges Fast and Slow. For a speculator, the participation

constraint PCI is the maximum information acquisition cost γi at which it is profitable to become

informed. Then, conditional on participation, the indifference condition ICI represents the value

of β such that an informed speculator is indifferent to submitting an order to Fast or Slow. We

write these conditions as:

ICI : (σ − E[σ | Buy at Fast])− (1− δ)(σ − E[σ | Buy at Slow]) = 0,(25)

PCI : γ̄ = Pr(γi ≤ max {σ − E[σ | Buy at Fast], (1− δ)(σ − E[σ | Buy at Slow])}).(26)

A liquidity investor faces two conditions similar to (25) and (26). The participation constraint

PCL identifies the latency sensitivity λ at which a liquidity investor is indifferent to trading on

an exchange or the internalizer. Then, conditional on trading at an exchange, the indifference

condition ICL characterizes the value λ̄ such that a liquidity investor is indifferent to submitting an

order to exchange Fast or Slow. We write these conditions as:

ICL: E[σ | Buy at Fast] = (1− δ)E[σ | Buy at Slow] + δ × kλ̄σ

2
,(27)

PCL: λ = min

{
2E[σ | Buy at Fast]

kσ
,
2E[σ | Buy at Slow]

kσ

}
.(28)

Inferring the participation thresholds λ and γ̄ and the indifference thresholds β and λ̄ from the

investor’s problem, the market-maker sets its prices at t = 1 using Bayes’ Rule:

askFast
1 = v0 +

βµγ̄σ

βµγ̄ + Pr(liquidity trade at Fast)
,(29)

askSlow
1 = v0 +

(1− β)µγ̄σ

(1− β)µγ̄ + Pr(liquidity trade at Slow)
.(30)

Immediately upon the announcement of v at t = 2, the market-maker updates its prices to askFast
2 =

askSlow
2 = v.
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Taken together, an equilibrium in our model with a standard exchange and a delayed exchange

is thus characterized by: (i) ask prices (29) and (30) (and symmetric bid prices) set by the market-

maker at Exchanges Fast and Slow, respectively, such that they earn zero profit in expectation; (ii) a

solution to the speculator’s order submission problem, (25)-(26); and (iii) a solution to the liquidity

investor’s order submission problem, (27)-(28). Finally, we require that Assumption 1 holds (i.e.,

k > k = 4((1−µ)+2µσ)
(1−µ)+4µσ

). We can now state the following existence and uniqueness theorem.

Theorem 2 (Existence and Uniqueness) Let k satisfy Assumption 1. If δ ∈ (0, 1], then there

exist unique values β∗ ∈ (0, 1], γ̄∗, λ∗, λ̄∗, and prices askFast∗
1 , askSlow∗

1 given by (29)-(30) that solve

equations (25)-(28). Moreover, there exists a unique δ∗ ∈ (0, 1) such that: i) δ < δ∗ ⇒ β∗ ∈ (0, 1),

and ii) δ ≥ δ∗ ⇒ β∗ = 1.

Theorem 2 illustrates that the magnitude of the delay will impact the degree to which informed

speculators will segment their orders away from the delayed exchange. For a delay of sufficiently

small size, informed speculators will use both exchanges, exposing market-makers at the delayed

exchange to some level of adverse selection. For a large enough delay (δ ≥ δ∗) informed specula-

tors will segment completely to the non-delayed exchange.

IV Impact of a Latency Delay in a Fragmented Market

IV.A Market Quality

A latency delay on market orders impacts the trading motives of informed speculators and liq-

uidity investors differently, leading to degrees of order flow segmentation. All informed speculators

face increased price risk on orders sent to Exchange Slow, while the impact to liquidity investors

depend on their private delay cost λi: those who are less latency-sensitive (i.e., λi ∈ (0, λ̄∗)) re-

spond less to price risk, and hence prefer to trade at Exchange Slow or the internalizer to ensure

execution close to the public value.
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We begin by characterizing the delay length, denoted δ∗, such that the price risk at Exchange

Slow for informed speculators is so high that they concentrate at Exchange Fast (β∗ = 1) for any

delay δ ≥ δ∗. We refer to δ∗ as the “segmentation point.” For δ ≥ δ∗, no informed trading occurs

at Exchange Slow, and thus askSlow∗
1 = 0. Consequently, the cost to liquidity investors from trading

at Exchange Slow is no greater than their delay costs, implying that all liquidity investors weakly

prefer on-exchange trading to the internalizer at t = 1 (λ∗ = 0). Simplifying and solving equations

(25)-(28) for δ∗ yields the expression:

δ∗(k, µ, σ) =

√
(1− µ)2(1− 2

k
)2 + 4(1− µ)(1− 2

k
)µσ − (1− µ)(1− 2

k
)√

(1− µ)2(1− 2
k
)2 + 4(1− µ)(1− 2

k
)µσ + (1− µ)(1− 2

k
)
.(31)

We use δ∗ to characterize our results on order flow segmentation in Proposition 1 below.

Proposition 1 (Order Flow Segmentation) Compared to the benchmark case, if Exchange Slow

imposes a delay δ ∈ (0, 1), then orders sent to the internalizer by liquidity investors decrease

(λ∗ ↓); for δ ≥ δ∗, informed speculators use only Exchange Fast (β∗ = 1) and no liquidity

investors use the internalizer (λ∗ = 0). Moreover, for any delay δ ∈ (0, 1), informed trading at

Exchange Slow declines (β∗ ↑) in δ; for δ ≥ δ∗, liquidity investors migrate from Exchange Slow to

Exchange Fast (λ̄∗ ↓) as δ increases.

We illustrate Proposition 1 in Figure 3: Fig. 3a describes venue choice by informed speculators in

δ, and Fig. 3b depicts the venue choice for liquidity investors with delay cost λi as a function of

δ. As the segmentation of informed order flow to Exchange Fast (β = 1) depends heavily on δ∗,

we note here the role that the innovation to the security σ plays in determining the delay length δ∗

required to achieve full segmentation.

Proposition 2 (Adverse Selection) The segmentation point δ∗(σ) is increasing in σ.

Adverse selection, which is also a proxy for fundamental volatility in our model, impacts only

the information acquisition decision directly: as σ increases, information acquisition becomes
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more profitable, which increases γ̄∗. Thus, δ∗ increases in σ: for high-volatility stocks, more in-

formation acquisition leads to greater adverse selection on Exchange Fast, reducing the migration

of informed speculators from Exchange Slow at any δ. Though intuition suggests that delayed ex-

changes would provide greater protection for liquidity investors in higher volatility environments,

we show that the increased competition for information acquisition requires a longer delay to fully

segment informed trading to the standard exchange.

Liquidity and Exchange Volume. Proposition 1 predicts that the introduction of a delayed

exchange segments informed order flow away from Exchange Slow as price risk increases, while

relatively latency-insensitive liquidity investors remain at Exchange Slow (i.e., λ ∈ (λ∗, λ̄∗)) and

the internalizer (i.e., λ ∈ (0, λ∗)). The result is a widening of the spread at Exchange Fast. More-

over, the reduction in adverse selection at Exchange Slow siphons the most relatively latency-

sensitive liquidity investors from the internalizer (λ∗ ↓; Fig. 3b), further pushing the quoted spread

at Exchange Slow to zero as the delay length approaches the segmentation point (δ → δ∗). Once

the latency delay exceeds δ∗, informed order flow fully segments to Exchange Fast, and thus any

greater delay narrows the spread at Exchange Fast as liquidity investors with lower latency sensi-

tivity begin to migrate to Exchange Slow (λ̄∗ ↓; Fig. 3b). We summarize these liquidity effects in

Proposition 3 below, and display the dynamics over δ in Figure 4.

Proposition 3 (Quoted Spreads) Let Exchange Slow impose a delay, δ ∈ (0, 1). Compared to the

benchmark case, the quoted spread is narrower at Exchange Slow (askSlow∗
1 ≤ askSlow

1,B ), but wider

at Exchange Fast (askFast∗
1 ≥ askFast

1,B). Moreover, askSlow∗
1 decreases in δ; askFast∗

1 increases in δ for

δ < δ∗, and decreases for δ ≥ δ∗.

Taken together, Propositions 1 and 3 detail the impact of a delay on overall exchange-traded

volume. We define total exchange-traded volume as the probability that an investor who arrives at

the market in t = 0 and submits an order to either Exchange Fast or Slow in t = 1:

(32) Volume = µγ̄∗ + (1− µ)(1− λ∗).

Equation (32) divides volume into two components: informed speculator volume, and liquidity
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investor volume. The introduction of a delay segments informed speculators to Exchange Fast,

where increased competition for information rents (i.e., worsening of liquidity) reduces informa-

tion acquisition by speculators. The speculators with the highest information acquisition costs γi

leave the market, reducing informed speculator volume (µγ̄∗ ↓; Fig. 5a). Conversely, the segmen-

tation of informed speculators to Exchange Fast improves liquidity at the delayed exchange, which

then attracts the least latency-sensitive investors, who would otherwise trade at the internalizer

(λ∗ ↓; Fig. 3b), increasing on-exchange volume from liquidity investors ((1 − µ)(1 − λ∗) ↑; Fig.

5a). In aggregate, the latter effect dominates, increasing total on-exchange volume (Fig. 5b).

Proposition 4 (Exchange Volume) Compared to the benchmark case, if Exchange Slow imposes

a delay δ ∈ (0, 1), then: i) informed speculator participation falls, ii) liquidity investor participa-

tion increases, and; iii) total exchange-traded volume increases.

Propositions 1, 3, and 4 yield several testable predictions on the impact to market quality

resulting from an exchange’s implementation of a latency delay.

Empirical Prediction 1 (Market Quality) If an exchange introduces a latency delay:

(i) quoted spreads tighten at the delayed exchange, and widen at standard exchanges;

(ii) informed trading increases on standard exchanges relative to the delayed exchange,

and decreases on the delayed exchange overall, and;

(iii) total exchange-traded volume increases, and total informed trading falls.

Exchanges advertise the reduction in adverse selection to liquidity suppliers as a core benefit

of a latency delay. We predict that introducing a latency delay achieves this goal by redistributing

informed speculators from the delayed exchange to the standard exchange. Moreover, informed

speculators optimally avoid exchanges with sufficiently long delays altogether, allowing liquidity

suppliers to quote a very narrow spread. The latency delay allows the exchange to effectively

“cream skim” uninformed orders orders from the conventional exchange. Our prediction that

exchanges with latency delays facilitate fewer informed trades is supported empiricially by two

22



studies that examine the introduction of a delay at TSX Alpha (Chen et al. (2017) and Anderson et

al. (2018)). Moreover, Chen et al. (2017) find that spreads worsen on standard exchanges, driven

by the redistribution of adverse selection.

Chen et al. (2017) also find that liquidity worsens on TSX Alpha following the introduction

of a delay, via widening spreads. We argue, though, that this does not directly contradict our

predictions. TSX Alpha imposes a minimum order size for liquidity providers to bypass the latency

delay to post limit orders.14 Hence, the observed negative impact on liquidity may not arise from

the introduction of the delay itself, but from the increased depth requirement. Anderson et al.

(2018) find no impact on the quoted spread at TSX Alpha.

IV.B Price Discovery and Welfare

Information Acquisition and Price Discovery. Our model predicts that latency delays have

the desired effect of segmenting informed order flow to the non-delayed exchanges (Proposition

1), leading to improved liquidity at the delayed exchange at the expense of the standard exchange

(Proposition 3). Because we abstract from trading commissions and fees, the quoted spread at each

exchange reflects the price impact of a trade at t = 1. The intensified competition for information

rents reduces informed speculator participation (Proposition 4), and thus information acquisition.

Taking these together, we arrive at the following Corollary.

Corollary 2 (Price Impact and Information Acquisition) Compared to the benchmark case, if

Exchange Slow imposes a delay δ ∈ (0, 1), then the price impact from orders filled at t = 1

increases at Exchange Fast and falls at Exchange Slow, and total information acquisition falls

(µγ̄∗ ↓).

Corollary 2 indicates the ambiguous impact of a delay on price discovery: despite a fall in in-

formation acquisition, the delay has divergent effects on price impact across the exchanges. Hence,

we seek a measure that captures price discovery from an ex-ante, per-trader perspective. To do so,
14As of May 2019, more than 85% of all symbols on TSX Alpha require a minimum post-only order size greater

than 500 shares. https://www.tmxmoney.com/en/research/post_only.html
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we measure price discovery using the proportional pricing error from Zhu (2014), defined as the

root mean-squared error (RMSE) of the true asset value v and the expected permanent price impact

at t = 1, conditional on v, scaled by the innovation (absolute) value σ. We denote price discovery

at t = 1 (using the RMSE) by RMSE1.

RMSE1 =

√
E[(v − price impact)2 | v]

σ
.(33)

Equation (33) reduces to a function of quotes at t = 1, as the absence of non-informational trans-

action costs in our model implies that quotes are equal to their price impact. We can then write the

scaled RMSE explicitly:

RMSE1 =

√
1− µγ̄∗(β∗ × askFast∗

1 + (1− δ)(1− β∗)× askFast∗
1 )

σ
.(34)

We obtain the following result on price discovery numerically. We compute the RMSE for the

case where a delayed exchange is introduced alongside a non-delayed exchange (i.e., δ ∈ (0, 1]),

and center it around the benchmark value by subtracting RMSE(δ = 0). Therefore, positive

values imply that introducing a delayed exchange with delay δ produces a higher RMSE than the

benchmark case, thereby worsening price discovery; negative values indicate an improvement in

price discovery. We illustrate the result graphically in Figure 6a using three values for the measure

of speculators µ = {0.25, 0.5, 0.75}. Other values of µ provide similar intuition.

Numerical Observation 1 (Price Discovery) Compared to the benchmark case, the impact of a

delay on price discovery is dictated by the measure of speculators µ:

• for sufficiently low µ, there exists a δ̂ such that any δ > δ̂ improves price discovery;

• for higher µ, price discovery worsens for any delay.

We find that the impact of a latency delay on price discovery depends on both the relative

population of speculators in the market and the length of the delay. When there are relatively more

speculators (high µ), the result is an unambiguous fall in price discovery following the introduction
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of a delayed exchange (Fig. 6a: the solid line is non-negative for all δ ∈ (0, 1]). With a small

population of speculators (low µ), the introduction of a delay that concentrates informed order

flow to the standard exchange (δ ≥ δ∗) may improve price discovery (Fig. 6a: the long-dash line

is negative for all δ > δ̂ > δ∗0.25).

We predict that a delay may improve price discovery, despite lower information acquisition.

Decomposing price discovery into its components illustrates the mechanism. An informed spec-

ulator’s contribution to permanent price impact has two components: i) the level of information

acquisition, and ii) the venue choice by the informed speculator. As information acquisition falls

overall for any delay length, the first channel worsens price discovery, as price impacts fall at each

exchange. The imposition of a delay, however, also re-routes informed order flow from Exchange

Slow to Exchange Fast, and the effect of this second channel is ambiguous. It is not immedi-

ately apparent whether the expected price impact from an informed trade increases or decreases

as informed trading concentrates on a single exchange, nor whether this effect dominates channel

one.

Numerical Observation 1 suggests that µ plays an important role in a latency delay’s impact

on price discovery. From the perspective of empirical testing, we acknowledge that measuring

µ is difficult, as it is not clear how to identify traders who could choose to acquire information.

Toward a remedy of this issue, we note that our model predicts that price impact increases in µ in

the identical exchange benchmark setting.

Proposition 5 (Speculators and Price Impact) For δ = 0, askFast∗
1 and askSlow∗

1 are increasing

in µ.

Proposition 5 suggests that if an exchange implements a uniform delay across a basket of securities

(e.g., as implemented at IEX, TMX Alpha, Aequitas NEO, etc.,), pre-implementation differences

in permanent price impact levels may proxy for differences in µ.15

15Empirically, price impact has been measured using the change in mid-quote over a specified time horizon (e.g.,
30 seconds, 1 minute). In their work on the TMX Alpha speed bump introduction, Chen, Foley, Goldstein, and Ruf
(2017) use a 20-second price impact; Anderson, Andrews, Devani, Mueller, and Walton (2018) use a 1-second price
impact.
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We stress that our model examines the “speed” of price discovery: as information is eventually

impounded into prices (through trades or quotes) by the assumption that the asset value v is made

public in t = 2, our model studies to what extent introducing a latency delay at one exchange

impacts the expected level of information reflected in prices before t = 2. We assume that even

if no latency arbitrageurs ferry information from one market to another via market orders, the

information eventually reaches the market-maker who impounds the information through limit

order quote revision.

Investor Welfare. Our liquidity results suggest that a latency delay benefits latency-insensitive

liquidity investors, to the detriment of speculators and latency-sensitive liquidity investors. The

ambiguity as to the aggregate effect raises questions about the effect of latency delays on overall

investor welfare. To study investor welfare in our setting, we construct a measure that reflects

allocative efficiency (similar to Bessembinder, Hao, and Zheng (2015)). Our measure aggregates

the total profits from all market participants across all venues (Int denotes the internalizer). We

write the welfare function W explicitly as the expected net gains from trade to an investor who

enters the market at t = 0:

W = Pr(liquidity investor)×
(∫ 1

λ̄∗
πFast
L (λi; Buy Order) + πFast

MM(Sell Order)dλ(35)

+

∫ λ̄∗

λ∗
πSlow
L (λi; Buy Order) + πSlow

MM(Sell Order)dλ

+

∫ λ∗

0

πInt
L (λi; Buy Order) + πInt

MM(Sell Order)dλ

)

+ Pr(speculator)×
(
β∗
∫ γ̄∗

0

(
πFast
I (γi; Buy Order) + πFast

MM(Sell Order)
)

dγ

+ (1− β∗)
∫ γ̄∗

0

(
πSlow
I (γi; Buy Order) + πSlow

MM(Sell Order)
)

dγ

)

Equation (35) simplifies considerably.16 First, the profit to the uninformed speculator (who does

not trade) is zero. Next, note that the quotes, public values, and true values net out to zero in any

trade, as the transaction simply transfers these values between counterparties. Because the market-

16We provide a step-by-step simplification of (35) in the Appendix, Section VII.D.
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maker and the internalizer have no additional costs or private values, their contributions to welfare

beyond wealth transfer are zero. The delay costs paid by the liquidity investor remain, as do the

information acquisition costs paid by the informed speculator. Equation (35) thus simplifies to,

W = µ

(
−
∫ γ̄∗

0

γdγ

)
+ (1− µ)

(∫ 1

λ̄∗
0dλ+

∫ λ̄∗

λ∗
−δ × kσ

2
λdλ+

∫ λ∗

0

−kσ
2
λdλ

)
,(36)

= −µγ̄
∗2

2
− (1− µ)

(
δ(λ̄∗2 − λ∗2) + λ∗2

) kσ
4
.(37)

Our expression for welfare in (37) simplifies to two costs: delay costs incurred by liquidity in-

vestors, and resources spent on information acquisition by speculators. Liquidity investors face

a rise in delay costs as they migrate to slower venues to avoid adverse selection costs generated

by informed speculators at Exchange Fast, and through the implementation of the delay itself at

Exchange Slow. Information acquisition costs negatively impact welfare when less efficient spec-

ulators (i.e., those with higher private information acquisition costs) find it profitable to become

informed. Taking these together, we evaluate the impact of the introduction of delay at Exchange

Slow on welfare by comparing welfare in the environment with a delayed exchange W , to welfare

in the benchmark environment with identical exchanges WB. We do so by computing W centered

about the benchmark value W −WB; hence, positive values indicate a welfare improvement from

the introduction of a delayed exchange. We display our numerical result graphically in Figure 6b.

Numerical Observation 2 (Expected Welfare) Compared to the benchmark case, any delay length

δ ∈ (0, 1) lowers expected welfare.

We find that expected welfare declines for any non-maximal delay length, a result driven by

the disproportionate increase in delay costs borne by liquidity investors relative to the reduction

in information acquisition costs paid by speculators. We compute average information costs and

average delay costs for the environment where Exchange Slow implements a delay δ ∈ (0, 1] in

Figures 7a and 7b, respectively. Similar to our numerical welfare result, our figures for average in-

formation costs and average delay costs are centered about their benchmark values. Thus, positive

values indicate that these costs worsen with a delay, and negative values indicate improvement.
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In equilibrium, exchange Slow offers a narrower bid-ask spread than Exchange Fast, and a

lower rate of delay than the internalizer. Though this drives some liquidity investors to move

on-exchange from the internalizer, these investors are among the least latency-sensitive in the mar-

ket; thus average delay costs do not meaningfully reduce. The larger effect stems from investors

who would submit orders to Exchange Slow in the absence of a delay. These investors are more

latency-sensitive than those who move to the delayed exchange from the internalizer, and the im-

plementation of any delay increases the rate at which they incur delay costs. The implementation

of a delay does reduce average spending on information acquisition through a reduction in the prof-

itability of informed trading at Exchange Slow, and through the overall increase in competition for

information rents as informed speculators migrate to Exchange Fast. But, the increase in delay

costs dominates the reduction in resources spent, leading to a decline in total investor welfare.

V Exchange Competition and Optimal Latency Delays

When one exchange in a fragmented market implements a delay, liquidity impacts are mixed,

but the overall effect on welfare is negative. Because the impact on price discovery depends largely

on the delay, we provide insight into what delay lengths may be implemented by exchanges, in

equilibrium. Toward this goal, we examine the partial-equilibrium implementation decision of the

exchange that has access to a delay technology. That is, what delay length δ would an exchange

choose to implement, if any?

We assume that an exchange with access to a delay technology (Exchange Slow) strategically

selects a delay δ ∈ [0, 1] to maximize its profits by maximizing trading volume. We contend that

volume correlates with profit through per-trade access fees (abstracting from data sales, co-location

services, etc.). We enrich our treatment of optimal delay length selection by considering whether

the organizational relationship between the delayed exchange and the non-delayed exchange may

impact their volume-maximization strategy. In Canada and U.S., for example, IEX operates as

stand-alone venue, while Aequitas NEO, TSX Alpha, and NYSE American operate as subsidiaries
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or partners of non-delayed exchanges. We account for these differences through assumptions on

the profit motive: a stand-alone venue imposes a delay (if any) that maximizes its own volume,

while a subsidiary exchange imposes a delay (if any) that maximizes the total volume across both

exchanges. We assume that a subsidiary exchange would be reluctant to impose a delay that si-

phoned order flow away from its parent exchange, if the result were fewer trades in aggregate.

First, we assume that Exchange Slow operates as a stand-alone venue, and hence selects the

delay length that maximizes its own-venue volume. We know from Proposition 1 that any delay

length δ ≥ δ∗ segments informed order flow to Exchange Slow, and thus the quoted spread at

Exchange Slow does not improve for any delay longer than δ∗. Then, because any delay δ > δ∗

increases the rate at which liquidity investors incur delay costs, with no improvement in the spread,

liquidity investors at Exchange Slow who are the most latency-sensitive will migrate to Exchange

Fast for any δ ∈ (δ∗, 1]. The result is lower volume for any δ ∈ (δ∗, 1] compared to δ∗. Hence, an

optimal delay length (if any) must be in δ ∈ [0, δ∗].

Second, for any positive delay length to be optimal, delayed exchange volume conditional on

a delay must be higher than in the benchmark case (Theorem 1). Therefore, Exchange Slow will

impose a delay only if doing so increases its volume. Taking this into consideration, we arrive at

the following result.

Proposition 6 (Stand-alone Delayed Exchange) Let δ = 0 and (βB, λ̄B, λB, γ̄B) ∈ (0, 1)4 form

an equilibrium that satisfies Theorem 1. If Exchange Slow operates independently of Exchange

Fast, then it is optimal for Exchange Slow to impose a delay δ = (0, δ∗] for any βB > 1−2/k
1−λB

.

Moreover, any δ = (0, δ∗] yields the same post-delay market share.

Proposition 6 suggests that a sufficiently small stand-alone exchange will impose a short delay

to provide an option for liquidity investors who would sacrifice some level of price improvement

to secure faster order execution. In effect, the stand-alone exchange creates an alternative in the

latency “product space” that limits adverse selection, while providing quicker order fill than the

internalizer. Interestingly, we observe that delayed exchange volume is constant for all δ ∈ (0, δ∗],

as any outflow of informed speculators to the standard exchange is exactly offset by an inflow
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of liquidity investors from the internalizer. In light of this, we posit that an exchange may elect

to set the delay at the segmentation point δ = δ∗ to align with the aforementioned goal of some

exchanges (e.g., Aequitas NEO and IEX) to “level the playing field” between natural investors and

high-frequency traders.

Chakrabarty, Huang, and Jain (2018) find evidence that IEX’s implementation of a 350 mi-

crosecond delay correlates with an increase in its volume share. The authors find no contempora-

neous impact on the exchanges ICE and NASDAQ, but a -4.90% decline in volume at the CBOE.

They conjecture that the difference in effects relates the responses of each exchange to IEX’s delay:

while ICE and NASDAQ had expressed plans to introduce their own delays, the CBOE had not.

Now, consider a delayed exchange that operates as a subsidiary of a standard exchange. Since

any cross-exchange migration has a net-zero effect on profits, an optimal delay maximizes to-

tal volume by encouraging the maximal combination of speculator participation (i.e., information

acquisition), and emigration of liquidity investors from the internalizer. We find that, while infor-

mation acquisition is lower for all δ ∈ [0, δ∗], the liquidity investor order flow siphoned from the

internalizer exceeds the loss of informed order flow. Moreover, for δ > δ∗, the migration of liq-

uidity investors from Exchange Slow to Fast reduces adverse selection on the standard exchange,

incentivizing an increase in speculator information acquisition and informed order flow. Thus, the

optimal delay length is δ = 1.

Proposition 7 (Subsidiary Delayed Exchange) Let δ = 0 and (β∗, λ̄∗, λ∗, γ̄∗) ∈ (0, 1)4 form an

equilibrium that satisfies Theorem 1. If Exchange Slow operates as a subsidiary of Exchange Fast,

then Exchange Slow will impose a delay δ = 1 for any β∗ ∈ (0, 1).

If the delayed exchange operates as a subsidiary of the standard exchange, the optimal delay

differs substantially from Proposition 6. In this case, Exchange Slow chooses the (effectively) max-

imal delay, δ = 1, such that all orders fill after the market-maker updates its quotes at t = 2. The

exchange is motivated to effectively operate an internalizer of its own, providing an on-exchange

option for latency-insensitive investors. The firm prefers the maximum delay over any shorter

delay, as it not only incentivizes latency-insensitive liquidity investors to migrate to the delayed
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exchange, but also maintains the presence of latency-sensitive liquidity investors at its standard

exchange, thus ensuring maximum speculator participation. Together, these effects maximize total

on-exchange volume (Fig. 3b).

Propositions 6 and 7 predict that both stand-alone and subsidiary delayed exchanges will select

some positive level of delay as part of a volume-maximization strategy. As is common prac-

tice in Canada and the U.S., delayed exchanges apply a uniform delay to all securities (e.g., 350

microsecond fixed delay at IEX; 1-3 millisecond random delay at TSX Alpha). Proposition 2 sug-

gests, though, that fundamental volatility σ may impact the effectiveness of a uniform delay, as σ

impacts the segmentation point δ∗.

Corollary 3 (Adverse Selection and Exchange Volume) For δ ≤ δ∗, an increase in σ leaves

delayed volume unchanged; for δ > δ∗, delayed exchange volume increases in σ.

While the volatility-sensitivity of δ∗ does not impact the delay choice of a subsidiary exchange

that invariably sets δ = 1, it encourages a stand-alone exchange to set a shorter delay for securities

where σ is low. If a stand-alone exchange insists on implementing a uniform delay, Corollary 3

suggests that the exchange cannot maximize volume while simultaneously minimizing the bid-ask

spread (adverse selection).

Propositions 6 and 7 also focus our result on price discovery. Because a subsidiary exchange

optimally selects the maximal delay (δ = 1), the resulting environment is effectively unchanged

from the benchmark case. A stand-alone exchange, however, will select an interior delay δ ∈

(0, δ∗], if such a delay will improve their market share. Because all delays δ ∈ (0, δ∗] maximize

the profit of a stand-alone exchange, market organization alone does not yield an unambiguous

price discovery prediction. Consider that delayed exchanges may also seek to minimize adverse

selection from latency arbitrageurs as a secondary goal. Formally, if we assume that, conditional

on maximizing profit, a stand-alone exchange will select the delay that minimizes the bid-ask

spread at its venue, then the optimal delay length for a stand-alone exchange is δ = δ∗. With this

assumption, our model yields the following numerical result, shown graphically in Figure 8a.

31



Numerical Observation 3 Assume that a stand-alone delayed exchange selects the delay length

δ = δ∗. Then, there exists a µ̂ ∈ (0, 1) such that price discovery improves (worsens) for µ ≤ µ̂

(µ > µ̂).

Numerical Observation 3 suggests that availability of a stand-alone delayed venue may improve

the speed of price discovery for assets with lower ex-ante price impact (Proposition 5). Moreover,

a delayed exchange may improve the efficiency of price discovery for these assets, as any improve-

ment in price discovery occurs despite a reduction in resources spent on information acquisition

(Corollary 2).

VI Conclusion

Delayed exchanges advertise latency delays as a way to “level the playing field” between fast

and slow traders. As latency arbitrageurs require a speed advantage to pick off stale quotes, a

latency delay can reduce this advantage, to the benefit of liquidity investors who are less latency-

sensitive. Our paper analyzes the impact that introducing a latency delay has on the overall market

quality of a fragmented market. We show that delayed exchange liquidity does improve, but that

this comes at the expense of the standard exchange. The overall impact is a worsening of aggregate

investor welfare.

The organizational relationship between the delayed exchange and the standard exchange also

plays an important role on the set of optimally implementable delays. An exchange that focuses

on its own profit will impose a delay that reduces overall investor welfare, while a subsidiary of a

conventional exchange will essentially replicate the model of an off-exchange internalizer, leaving

market quality unchanged. We show that exchanges that implement a delay are relatively small

by volume share, and specialize to provide a venue that offers a middle-ground between price

improvement and latency sensitivity.

Because latency delays impact the possibility of cross-market arbitrage, our study does not

examine price discovery from the perspective of impounding “new” fundamental information into
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prices. Instead, we examine the speed at which mispricings are corrected. We show that a delay

reduces market-wide investment in identifying these pricing errors, which in most cases leads to

a decline in the speed of price discovery. We find, though, that the speed of price discovery may

improve for securities with a low speculator presence relative to liquidity traders—that is, securities

with lower price impact before the implementation of a delay.
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VII Appendix

This appendix includes a notation index, a description of the mechanics underlying latency

delays, and all proofs and figures not presented in-text.

VII.A List of Variables, Parameters, and Notation

Variable Description

v asset fundamental value at period t = 3

v0 public value at period t = 0

δ probability that an order is filled after v is announced
σ absolute value of the innovation to the public prior at t = 3

µ total mass of speculators
µI mass of speculators who acquire information at t = 0

ci (private) costs of delay to liquidity investor i
k universal scaling component of the costs of delay ci
λi private scaling component of the costs of delay ci
K cost paid by a liquidity investor who does not submit an order
γi (private) information acquisition costs to speculator i
Fast denotes the exchange without a latency delay
Slow denotes the exchange with a latency delay
askFast

t ask price at Exchange Fast at period t
askSlow

t ask price at Exchange Slow at period t
bidFast

t bid price at Exchange Fast at period t
bidSlow

t bid price at Exchange Slow at period t
πI profit function for an informed speculator
πL profit function for a liquidity investor
β probability that an informed investor submits an order to Exchange Fast
α probability that a liquidity investor submits an order to Exchange Fast
B denotes the value for the benchmark case (δ = 1)
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VII.B Latency Delays

Broadly speaking, a latency delay is the imposition of an intentional delay on some or all

incoming orders by a trading venue. Despite being a relatively new feature offered by exchanges,

many varieties of latency delay exist.

The most well-known type of latency delay is that of IEX in the United States. This delay,

sometimes referred to as the “magic shoebox,” indiscriminately slows down all orders entering the

exchange, as well as all data leaving the exchange, by 350 microseconds. This alone would not

prevent multi-market strategies, as traders could simply send their orders to IEX 350 microseconds

in advance. However, IEX allows traders to post “pegged” orders, which move instantaneously

in response to external factors. Pegged orders at IEX are available in multiple forms, but the

one most relevant to this paper is the “discretionary peg.” This order type uses an algorithm to

determine if a price movement is likely, a behavior IEX refers to as a “crumbling quote.”17 If IEX

determines that the quote in a particular security is likely to move, it automatically reprices orders

placed at “discretionary pegs,” without the 350 microsecond delay. Since these pegged orders move

instantaneously following trades at other exchanges, market-makers using these orders receive

some protection from multi-market trading strategies.

A second type of delay allows some forms of liquidity-supplying orders to bypass the delay.

These limit orders often have a minimum size or price improvement requirement, which differen-

tiates them from a conventional limit order. By allowing some orders to bypass the latency delays,

market-makers who use these orders are able to update their quotes in response to trading on other

venues. If the delay is calibrated correctly, updating can occur before liquidity-demanding orders

traverse the latency delay. For example, Canadian exchange TSX Alpha imposes a minimum order

size requirement on liquidity providing orders that wish to bypass their random delay of 1 to 3 mil-

liseconds. Liquidity providers submitting limit orders called “post-only orders” satisfy a minimum

size requirement based on the price of the security, which range from 100 shares for high-priced to

17Complete documentation is available in the IEX Rule Book, Section 11.190 (g), available here: https://
www.iextrading.com/docs/Investors\%20Exchange\%20Rule\%20Book.pdf
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20,000 shares for lower-priced securities.18

Finally, a third type of latency delay explicitly classifies traders into two groups. Some traders

are slowed by the delay, while other traders trade normally. Unlike the other types of delays

that rely on order types, this form requires the explicit division of traders into two classes by

the exchange. An example is the latency delay imposed by Canadian exchange Aequitas NEO,

which divides traders into Latency Sensitive Traders, who are affected by the delay, and non-

Latency Sensitive Traders, who are not.19 In the case of Aequitas Neo, those deemed to be “latency

sensitive” are subjected to a randomized delay of between 3 to 9 milliseconds.

VII.C Multiple Orders from Informed Speculators

We simplify our model by assuming that investors may submit a single market order to only

one exchange. In this section, we briefly discuss the possibility of multiple orders.

While it is standard in the literature to assume that liquidity investors have a fixed trading

size, it is not uncommon to allow speculators to realize their information rents to the fullest extent

possible. We argue that the single-order assumption plays a similar role to message and access

fees, or technology costs associated with employing a multi-market strategy (e.g., co-location,

order-routing). In the context of a speed bump, replacing the single-order assumption with a cost

for multi-market orders yields qualitative similar results.

Suppose an informed speculator may play a multi-market latency arbitrage strategy. Informed

speculators may choose to submit a market order to the standard exchange, as well as a market

order to the delayed exchange.20 The market order to the delayed exchange earns positive profit

with probability 1 − δ, or zero profit otherwise, and hence there is no cost to submitting an extra

18Complete documentation is available on the TMX Group website here: https://www.tsx.com/
trading/tsx-alpha-exchange/order-types-and-features/order-types

19The factors underlying this determination are outlined in Section 1.01 of the Aequitas Neo rule book, available
here:
https://aequitasneoexchange.com/media/176022/aequitas-neo-trading-policies-
march-13-2017.pdf

20In practice, as an alternative to sending a market order to the delayed exchange, investors may elect to use an
immediate-or-cancel/fill-or-kill order, so as to transact only if liquidity is available at the price observed at time of
submission.
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order. In this case, informed speculators would always choose to play a multi-market strategy.

In practice, investors pay additional costs per order. For example, the Investment Industry

Regulatory Organization of Canada (IIROC) mandates a messaging cost to be passed on to deal-

ers21, and NYSE MKT implements a tiered-fee schedule to members based on quarterly message

traffic for its obligation to the Consolidated Audit Trail NMS plan.22 Several other fees for data

access, monitoring, and order routing would introduce costs to investors who send messages to

many exchanges.23 These costs can be introduced as heterogeneous messaging costs for informed

speculators ηi ∈ U [0,∞] (or some finite upper bound). With this feature, informed speculators

continue to submit order to the standard exchange, but only submit to the delayed-exchange if

their messaging cost is sufficiently low. Investors whose messaging cost exceeds their expected

profit on the delayed exchange, adopt a single-market strategy at the standard exchange. Similar

to our existing model, as δ increases, the delayed exchange becomes increasingly unprofitable and

informed trading becomes concentrated on the standard exchange.

21See sections 23a,b of the IIROC Notice:
http://www.iiroc.ca/Documents/2016/2b56885a-9932-433c-99a2-766be291c2ce_en.
pdf

22See “Consolidated Audit Trail Funding Fees” in
https://www.nyse.com/publicdocs/nyse/markets/nyse-american/NYSE_MKT_Equities_
Price_List.pdf

23TSX and TSX Alpha list several “Common Technology and Other Fees” associated with connecting to each
exchange: https://www.tsx.com/trading/tsx-alpha-exchange/fee-schedule.
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VII.D Simplification of Welfare Function

In this section, we provide a step-by-step simplification of Equation (35) to the form in (37).

W = Pr(liquidity investor)×
(∫ 1

λ̄∗

(
πFast
L (λi; Buy Order) + πFast

MM(Sell Order)
)

dλ

(38)

+

∫ λ̄∗

λ∗

(
πSlow
L (λi; Buy Order) + πSlow

MM(Sell Order)
)

dλ

+

∫ λ∗

0

(
πInt
L (λi; Buy Order) + πInt

MM(Sell Order)
)

dλ

)

+ Pr(speculator)×
(
β∗
∫ γ̄∗

0

(
πFast
I (γi; Buy Order) + πFast

MM(Sell Order)
)

dγ

+ (1− β∗)
∫ γ̄∗

0

(
πSlow
I (γi; Buy Order) + πSlow

MM(Sell Order)
)

dγ

)
= (1− µ)

(
(1− λ̄∗)

2

(
v0 − askFast∗

1 + askFast∗
1 − v0

)
(39)

+ (1− δ)(λ̄∗ − λ∗)(v0 − askSlow∗
1 + askSlow∗

1 − v0)− δkσ(λ̄∗2 − λ∗2)

4

+

(
v − v − kσλ∗

4
+ (v − v)

)
λ∗

2

)
+ µγ̄∗

(
β∗(v − askFast∗

1 − γ̄∗

2
+ askFast∗

1 − v)

+ (1− β∗)
(

(1− δ)(v − askSlow∗
1 − γ̄∗

2
+ askSlow∗

1 − v) + δ(v − v − γ̄∗

2
+ (v − v))

))
=− µγ̄∗2

2
− (1− µ)

(
δ(λ̄∗2 − λ∗2) + λ∗2

) kσ
4

(40)

VII.E Proofs

Proof (Theorem 1). The proof that follows focuses on the actions of buyers; sellers’ decisions

are symmetric. As in the main text, we will use the subscript ‘B’ to denote benchmark equilib-

rium values (e.g., βB). Informed (I) and liquidity (L) investors who submit an order at t = 1 to
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Exchange j have profit functions given by:

πjI(γi; Buy at t=1) = v − askj1 − γi,(41)

πjL(λi; Buy at t=1) = v0 − askj1.(42)

Moreover, the profits investors to submitting an order to the internalizer are given by:

πInt
I (γi) = v − v − γi,(43)

πInt
L (λi) = v − v − kσλi

2
.(44)

Because exchanges are identical by assumption, it must be that in any equilibrium, their ask and

bid prices are identical. Recall that prices are given by (18)-(19):

askFast
1 = E[v | Buy at Fast] = v0 +

βµγ̄σ

βµγ̄ + (1− µ)αPr (λi ≥ λ)
,(45)

askSlow
1 = E[v | Buy at Slow] = v0 +

(1− β)µγ̄σ

(1− β)µγ̄ + (1− µ)(1− α)Pr (λi ≥ λ)
.(46)

We then solve askFast
1 = askSlow

1 for (αB, βB) ∈ (0, 1)2, for all γ̄ and λ:

βBµγ̄σ

βBµγ̄ + (1− µ)αBPr (λi ≥ λ)
=

(1− βB)µγ̄σ

(1− βB)µγ̄ + (1− µ)(1− αB)Pr (λi ≥ λ)
,

⇐⇒ βB(1− αB) = (1− βB)αB ⇒ βB = αB.(47)

Given that equilibrium prices in (45) and (46) are equal, we need only solve for γ̄B such that

(41) is zero for either the Fast or Slow exchange. Letting j = Fast in (41), we have:

γ̄B − (v − askFast
1 ) = 0,(48)

We now show that there exists a unique γ̄B ∈ [0, 1] that solves (48).

γ̄ = 0 : 0− (σ − 0) < 0,(49)

γ̄ = 1 : 1− σ
(

1− µ

µ+ (1− µ)Pr (λi ≥ λ)

)
> 0,(50)
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where (50) is positive ∀σ ≤ 1. Hence, γ̄B exists. Then, differentiate equation (48) by γ̄:

∂

∂γ̄
(γ̄ − (v − askFast

1 )) = 1 + σ

(
(1− µ)Pr (λi ≥ λ)

(µ+ (1− µ)Pr (λi ≥ λ))2

)
> 0,(51)

Then, as (48) crosses zero from below at most once, implying that γ̄B is unique ∀λ ∈ [0, 1].

We now search for the latency sensitivity value λ such that a liquidity investor is indifferent

to trading on-exchange or at the internalizer. We show that a unique λB ∈ [0, 1] exists by setting

equal the liquidity investor profit functions (42) and (44):

πFast
L (λi) = πInt

L (λi) ⇐⇒
kσλ

2
− (v0 − askFast

1 ) = 0(52)

Evaluating (52) at the endpoints of λ, we have:

λ = 0 : 0− µγ̄B(0)× σ
µγ̄B(0) + (1− µ)Pr (λi ≥ 0)

< 0,(53)

λ = 1 :
kσ

2
− σ > 0,(54)

where γ̄B(λ = 0) > 0 because askFast
1 > 0, and (54) is positive by the assumption k > k > 2.

Then, because the solution to (52) solves a quadratic equation in λ, the solution must be unique.

Thus, a unique equilibrium exists for all βB = αB ∈ (0, 1).

Proof (Theorem 2). We prove this theorem by partitioning the informed speculator’s venue

choice variable β into three cases.

Speculators use only Exchange Slow (β∗ = 0): Consider the informed speculator’s information

indifference condition, where β∗ = 0.

ICI : σ − 0− (1− δ)
(
σ − µγ̄

µγ̄ + (1− µ)(λ̄− λ)

)
= δσ +

µγ̄

µγ̄ + (1− µ)(λ̄− λ)
> 0.(55)

Hence, there is always an incentive for an informed investor to submit an order to Exchange Fast,

implying that β∗ 6= 0.

Speculators use both exchanges (β∗ ∈ (0, 1)): We now solve the system of characterizing equa-

tions from (25)-(28) for λ∗, λ̄∗, γ̄∗ and β∗, given the assumption that β∗ ∈ (0, 1). We write the
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characterizing equations explicitly below:

ICI : 1− µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ)

(
1− µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)

)
= 0,(56)

PCI : γ̄ − σ
(

1− µγ̄β

µγ̄β + (1− µ)(1− λ̄)

)
= 0,(57)

ICL:
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ) µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
− δkλ̄

2
= 0,(58)

PCL:
kλ

2
− µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
= 0.(59)

First, we rearrange (56) to solve for δ:

(60) δ =
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ) µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
.

Then, substituting equation (60) into (58) and simplifying yields the solution λ̄∗ = 2/k.

Now, we show that γ̄∗ ∈ [0, 1] exists for all (β, λ) ∈ (0, 1)× [0, λ̄∗] (λ is bounded above by λ̄∗

by construction). Evaluating (57) at its endpoints, we have:

PCI |γ̄=0 : 0− σ < 0,(61)

PCI |γ̄=1 : 1− σ
(

1− µβ

µβ + (1− µ)(1− λ̄)

)
> 0,(62)

where (62) holds by the fact that σ ≤ 1. Thus, by the intermediate value theorem, γ̄∗ ∈ [0, 1]

exists. To show that γ̄∗ is unique, we solve (57) for the non-negative root of γ̄:

γ̄∗ =

√
(1− µ)2(1− 2/k)2 + 4(1− µ)(1− 2/k)µβσ − (1− µ)(1− 2/k)

2µβ
.(63)

We can see that γ̄∗ is unique, and is bounded within [0, 1], as the limit for µ = 0 can be solved by

inspection of (57), as µ→ 0 =⇒ γ̄∗ = σ ≤ 1.

We now appeal to the intermediate value theorem using (59) to show that λ∗ ∈ [0, λ̄∗] exists for
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all β ∈ (0, 1), given γ̄∗.

PCL |λ=0 = 0− µγ̄∗(1− β)

µγ̄∗(1− β) + (1− µ)× 2/k
< 0,(64)

PCL |λ=2/k=
k

2
× 2

k
− 1 = 0,(65)

where γ̄∗ is a function of β and parameters, but not λ. Hence, λ∗ ∈ [0, λ̄∗] exists.

To show that λ∗ is unique, we take the first derivative of PCL.

∂

∂λ
(PCL) =

k

2
− µγ̄∗(1− β)(1− µ)

(µγ̄∗(1− β) + (1− µ)(2/k − λ))2
.(66)

Because we cannot sign (66), we take the second derivative to show that (59) crosses zero from

below at most once.

∂2

∂λ2 (PCL) = − 2µγ̄∗(1− β)(1− µ)2

(µγ̄∗(1− β) + (1− µ)(2/k − λ))3
< 0.(67)

Because (67) is negative, (59) must cross zero from below at most once on λ ∈ [0, 2/k]. Hence, λ∗

is unique for all β ∈ (0, 1).

Lastly, we show that there is a unique β∗ ∈ (0, 1) that solves (55), given (γ̄∗, λ̄∗, λ∗).

ICI |β=0 : 1− (1− δ) µσ

µσ + (1− µ)(2/k − λ∗)
> 0,(68)

ICI |β=1 : δ − µγ̄∗

µγ̄∗ + (1− µ)(1− 2/k)
< 0, ∀δ < µγ̄∗

µγ̄∗ + (1− µ)(1− 2/k)
= δ̄.(69)

Thus, by the intermediate value theorem, for all δ < δ̄, there exists a β ∈ (0, 1) that satisfies (56).

To show that β∗ is unique, we insert the expression for γ̄∗ into (55) and differentiate (56) with
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respect to β.

∂

∂β
(ICI) = −

2(1− µ)σ2(k − 2)2
(

((1− δ)/2)×
√
h(β) + r(β)

)
µ√

h(β)(
√
h(β) + (k − 2)(1− µ))2

< 0,(70)

where: h(β) = (1− µ)(k − 2)(4µβkσ + (1− µ)(k − 2)) > 0,(71)

r(β) = k(1− δ)
(

(1− µ)

2
+ σ(1 + β)µ

)
+ (1 + δ)(1− µ) > 0.(72)

Thus, β∗ is unique. Finally, we show that β ∈ (0, 1)⇒ δ < δ̄. Let δ ≥ δ̄, and suppose β∗ ∈ (0, 1).

We know that β∗ ∈ (0, 1) ⇒ λ̄∗ = 2/k. Because equation (56) is decreasing in β∗ and increasing

in δ, there cannot be a solution β∗ ∈ (0, 1) to the right of δ̄, given that β∗(δ̄) = 1. Thus, β∗ ∈ (0, 1)

if and only if δ < δ̄. Moreover, by simplifying (69), we can write δ̄ in terms of parameters only:

δ̄ =

√
(1− µ)2(1− 2

k
)2 + 4(1− µ)(1− 2

k
)µσ − (1− µ)(1− 2

k
)√

(1− µ)2(1− 2
k
)2 + 4(1− µ)(1− 2

k
)µσ + (1− µ)(1− 2

k
)
.(73)

Speculators use only Exchange Fast (β∗ = 1): Here, we solve equations (25)-(28) for the case

where β∗ = 1. Inputting β = 1, we have the following characterizing equations:

ICI : δ −
µγ̄

µγ̄ + (1− µ)(1− λ̄)
≥ 0,(74)

PCI : γ̄ − σ
(

1− µγ̄

µγ̄ + (1− µ)(1− λ̄)

)
= 0,(75)

ICL: − µγ̄

µγ̄ + (1− µ)(1− λ̄)
+
δkλ̄

2
= 0,(76)

PCL:
δkλ

2
= 0.(77)

First, by inspection of (77), it must be that λ∗ = 0. To prove the existence of a unique γ̄∗, we solve

equation (75) for the non-negative root of γ̄:

(78) γ̄∗ =

√
(1− µ)2(1− λ̄)2 + 4(1− µ)(1− λ̄)µσ − (1− µ)(1− λ̄)

2µ
.

By inspection, γ̄∗ exists and is unique as long as the limit µ→ 0 exists, and is in the interval [0,1].
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By simply setting µ = 0, (75) admits the limit γ̄ = σ. Thus, γ̄∗ is unique.

Next, we show that there exists a unique λ̄∗ ∈ [0, 2/k] that solves (76) for all δ ≥ δ. We can

bound λ̄∗ ∈ [0, 2/k] because for any λ̄∗ > 2/k, (76) would be negative if the required inequality in

(74) holds. First, we show that λ̄∗ exists by evaluating λ̄ at 0 and 2/k:

ICL |λ̄=0 :
µγ̄∗

µγ̄∗ + (1− µ)
− 0 > 0,(79)

ICL |λ̄=2/k :
µγ̄∗(2/k)

µγ̄∗(2/k) + (1− µ)(1− 2/k)
− δ < 0,(80)

∀δ > µγ̄∗(2/k)

µγ̄∗(2/k) + (1− µ)(1− 2/k)
.

Hence, by the continuity of (76) in λ̄, λ̄∗ exists for all δ ≥ µγ̄∗(2/k)
µγ̄∗(2/k)+(1−µ)(1−2/k)

= δ. To show that

λ̄∗ is unique, we show that ICL is decreasing in λ̄, which ensures that ICL crosses zero from above

only once for any δ > δ on λ̄ ∈ [0, 2/k]. Differentiating (76) with respect to λ̄:

∂

∂λ̄
(ICL) =

µγ̄∗(1− µ)

(µγ̄∗ + (1− µ)(1− λ̄))2
+
∂γ̄∗

∂λ̄
× µ(1− λ̄)(1− µ)

(µγ̄∗ + (1− µ)(1− λ̄))2
− δk

2
.(81)

To see that (81) is negative, note that condition (74) holds only for δ ≥ µγ̄∗

µγ̄∗+(1−µ)(1−λ̄)
. Thus, input

δ = µγ̄∗

µγ̄∗+(1−µ)(1−λ̄)
into (81). Computing ∂γ̄∗

∂λ̄
and simplifying, we obtain the inequality:

∂

∂λ̄
(ICL) < −

2(1− µ)(1− λ̄)
(
k × v(λ̄)− 2(1− µ)

)
µσ

v(λ̄)
(
(1− µ)2(1− λ̄)2 + v(λ̄)

)2 ,(82)

where v(λ̄) =
√

(1− µ)(1− λ̄)
(
(1− µ)(1− λ̄) + 4µσ

)
. Then, evaluating (82) at λ̄ = 2/k, the

equation (82) is negative if and only if v(λ̄ = 2/k) > 2
k
(1 − µ) ⇐⇒ k > 4(1−µ+2µσ)

1−µ+4µσ
= k,

which is satisfied by Assumption 1. Hence, for all k > k, δ is the lowest δ for which a solution

to (76) exists. Thus, for all k > k, λ̄∗ exists and is unique if and only if δ ∈ [δ, 1]. Moreover, by

inspection, δ = δ̄ = δ∗.

Finally, we show that condition (74) is satisfied by λ̄∗, λ∗, and γ̄∗. Inputting γ̄∗ and λ∗ into
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condition (74) and differentiating by λ̄, we obtain:

∂ICI

∂λ̄
=

4µσ(1− µ)2(1− λ̄)

v(λ̄)(v(λ̄)− (1− µ)(1− λ̄))2
> 0,(83)

where v(λ̄) is as above. Then, because the second term of (74) is maximized at λ̄ and equal to δ∗,

condition (74) is satisfied for all δ ≥ δ∗.

Proof (Proposition 1). We begin by showing that β∗ ≥ β∗B and λ∗ ≤ λB for all δ ∈ (0, δ∗). For

δ ∈ (0, δ∗), we know that ∂β
∗

∂δ
> 0 from the proof of Theorem 2.

To show that λ∗ is decreasing in δ, we note that ∂γ̄∗

∂β∗ > 0 from the proof of Theorem 2. Thus,

by the product of the partial derivatives, we know that γ̄∗ is decreasing in δ. We also know that
∂askSlow∗

1

∂δ
< 0. To show this, we note that given the existence of unique equilibrium, the following

condition in λ∗ must be satisfied:

kλ∗

2
− askSlow∗

1 = 0 ⇐⇒ kλ∗

2
− µγ̄∗(1− β∗)
µγ̄∗(1− β∗) + (1− µ)(λ̄∗ − λ∗)

= 0.(84)

For this condition to hold, it must be decreasing in λ∗ for a decrease in γ̄∗ and an increase in β∗,

which follow from an increase in δ.

Now, let δ ∈ [δ∗, 1]. We obtain β∗ = 1 through the proof of Theorem 2. To show λ̄∗ is

decreasing in δ, note that γ̄∗ is now a function of λ̄∗ ≤ 2/k, and ∂γ̄∗

∂δ
= ∂γ̄∗

∂λ̄∗
∂λ̄∗

∂δ
. We know that

∂γ̄∗

∂λ̄∗
< 0 by substituting the value for askFast∗

1 from ICL into the speculator’s information acquisition

condition PCI , which yields the expression γ̄∗ = σ(2−δλ̄∗k)
2

. Hence, γ̄∗ moves inversely to λ̄∗.

Then, because ICL is decreasing in δ and λ̄∗, it must be that if δ increases, λ̄∗ must decline in δ for

δ ∈ [δ∗, 1].

Proof. (Proposition 2). To show that δ∗ is increasing in σ, we take the derivative of (31) with

respect to σ, and show that ∂δ∗

∂σ
> 0. Computing the derivative yields ∂δ∗

∂σ
= µx2

(
√
x2+xµσ+x)2

> 0,

where x = (1− µ)(1− 2
k
). Thus, δ∗ is increasing in σ.

Proof (Proposition 3). For the half spread at Exchanges Fast and Slow, askFast∗
1 and askSlow∗

1 , we

prove the two cases, δ ∈ (0, δ∗) and δ ∈ [δ∗, 1], separately. Let δ = 0. From the proof of Theorem
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1, we know that askFast∗
1 = askSlow∗

1 = µγ̄∗σ
µγ̄∗+(1−µ)(1−λ∗)

> 0. Now, consider askFast∗
1 . We know

from the speculator’s information acquisition condition PCI that askFast∗
1 moves inversely to γ̄∗, as

γ̄∗ =
(
σ − askFast∗

1

)
.

For δ ∈ (0, δ∗), we know that γ̄∗ is decreasing in δ from the proof of Proposition 1, which

implies that askFast∗
1 is increasing in δ. Now, let δ ∈ [δ∗, 1]. Recall from Proposition 1 that β∗ = 1,

and λ̄∗ is decreasing in δ on [δ∗, 1]. Then, because askFast∗
1 |δ=0= askFast∗

1 |δ=1, it must be that

askFast∗
1 (δ) > askFast∗

1 |δ=0 for all δ ∈ (0, 1). Now, consider askSlow∗
1 . Let δ ∈ [δ∗, 1]. By the proof

of Theorem 2, λ∗ = 0, and thus askSlow∗
1 = 0 < askSlow∗

1 |δ=0. For δ ∈ (0, δ∗), ∂askSlow∗
1

∂δ
< 0 follows

from Proposition 1, as λ declines in δ.

Proof (Proposition 4). Total exchange volume is given by the expression:

(85) Volume = µγ̄∗ + (1− µ)× (1− λ∗).

For δ ∈ (δ∗, 1), we know that λ∗ = 0, and thus ∂γ̄∗

∂δ
> 0 implies that Volume increases in δ on

[δ∗, 1]. Now let δ ∈ (0, δ∗]. Recall that λ̄∗ = 2/k. Thus, we can simplify (27) to obtain:

λ∗(µγ̄∗(1− β∗) + (1− µ)(λ̄∗ − λ∗))σ = λ̄∗µγ̄∗(1− β∗) ⇐⇒ λ∗(1− µ) = µγ̄∗(1− β∗).

Using this fact, we can simplify (85) to Volume = µγ̄∗β∗ + (1 − µ). Recall that from the proof

of Proposition (3), askFast∗
1 (δ < δ∗) = µγ̄∗β∗

µγ̄∗β∗+(1−µ)(1−2/k)
is increasing in δ. By computing this

derivative, we have that ∂askFast∗
1

∂δ
=

∂askFast∗
1

∂(γ̄∗β∗)
× ∂(γ̄∗β∗)

∂δ
> 0. Then, ∂askFast∗

1

∂(γ̄∗β∗)
= γ̄∗β∗(1−µ)σ

(γ̄∗β∗+(1−µ)(1−2/k))2
> 0,

which implies that ∂(γ̄∗β∗)
∂δ

> 0.

Proof (Proposition 5). In the equilibrium described by Theorem 1, price impact at either ex-

change when δ = 0 is given by the half-spread, askFast
1,B = askSlow

1,B . The expression for askFast
1,B is only

a function of µ, σ, γ̄B and λB, as βB and αB cancel out. Thus, we have:

askFast
1 =

µγ̄Bσ

µγ̄B + (1− µ)Pr(λi ≥ λB)
.(86)
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Next, recall the participation constraints from the identical market benchmark:

PCL :
λBkσ

2
− askFast

1,B = 0,(87)

PCI :γ̄B − (σ − askFast
1,B) = 0.(88)

Solve (87) for askFast
1,B, and substitute into (88) to solve for γ̄B as a function of λB: γ̄B = σ − λBkσ

2
.

Then, (86) becomes,

askFast
1,B =

µ
(
σ − λBkσ

2

)
σ

µ
(
σ − λBkσ

2

)
) + (1− µ)Pr(λi ≥ λB)

.(89)

Differentiating askFast
1,B by µ, we obtain:

∂askFast
1,B

∂µ
=

(
σ − λBkσ

2

)
Pr(λi ≥ λB)σ

µ
(
σ − λBkσ

2

)
+ (1− µ)Pr(λi ≥ λB)

+
∂askFast

1,B

∂λB
× ∂λB

∂µ
.(90)

Next, we differentiate the participation constraint (87) to provide an expression for ∂λB
∂µ

:

∂λB
∂µ

=
∂askFast

1,B

∂µ
.(91)

Inputting the expression for ∂λB
∂µ

obtained from (91) into (90) and solving for
∂askFast

1,B

∂µ
and simplify-

ing, we obtain:

∂

∂µ
(askFast

1,B) = − µk(1− µ)(k − 2)σ3(
(1− µ) +

(
σ − λBkσ

2

)
µ− 2(1− µ)

λBkσ

2

)2 < 0.(92)

Hence, the price impact of trades when δ = 0 is increasing in µ.

Proof (Proposition 6). To determine the maximum level of delayed exchange market share such

that implementing a delay is a profit-maximizing action, we characterize the equilibrium values for

β, γ̄, λ̄, and λ that, in the limit as δ → 0, simultaneously satisfy Theorem 1 and 2 in the following

Lemma.

Lemma 1 (Limit Equilibrium) Let δ → 0. Then, the equilibrium values in Theorem 2:
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• (lim
δ→0

β, lim
δ→0

λ̄)→
(

1−2/k
1−λ ,

2
k

)
• lim

δ→0
γ̄ →

√
((1−λ)x)2+4x(1−λ)(1−2/k)µσ−x

2µ(1−2/k)
, where x = (1− µ)(1− 2/k)

• lim
δ→0

λ→ 1−µ(1−2σ)−
√

(1−µ)((1−µ)+4µ(1−2σ/k)σ)

2+(k−2)µ

Proof (Lemma 1). We begin by recalling the indifference conditions from Theorem 2:

ICI : 1− µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ)

(
1− µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)

)
= 0,(93)

PCI : γ̄ − σ
(

1− µγ̄β

µγ̄β + (1− µ)(1− λ̄)

)
= 0,(94)

ICL:
µγ̄β

µγ̄β + (1− µ)(1− λ̄)
− (1− δ) µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
− δkλ̄

2
= 0,(95)

PCL:
kλ

2
− µγ̄(1− β)

µγ̄(1− β) + (1− µ)(λ̄− λ)
= 0.(96)

For this proof, we take some δ > 0 such that δ < δ∗ (which exists, for all µ, σ and k > k,

because δ∗ > 0). Thus, the equilibrium is such that β∗ ∈ (0, 1). By simplifying (95) using (93),

we arrive at the solution for λ̄∗ = 2
k
, which is constant in the limit as δ → 0.

Next, consider β∗ from (93). Taking the limit lim
δ→0

ICI yields that askFast∗
1 = askSlow∗

1 , which

holds if and only if β∗ = 1−λ̄∗
1−λ∗ = 1−2/k

1−λ∗ , given that lim
δ→0

λ∗ exists.

Now, consider the solution for γ̄∗, which obtains from (94). Using the solution from the proof

of Theorem 2, we see that γ̄∗ is not directly a function of δ, but instead is a function of β∗ and

λ̄∗, which have limiting values as above, conditional on the existence of lim
δ→0

λ∗. Hence, γ̄∗ =
√

((1−λ∗)x)2+4x(1−λ∗)(1−2/k)µσ−x
2µ(1−2/k)

, where x = (1− µ)(1− 2/k).

Lastly, take (96), and simplify using the limiting expression for β∗. We obtain:

PCL:
kλ∗

2
− µγ̄∗

µγ̄∗ + (1− µ)(1− λ∗)
= 0.(97)

Then, taking the limit lim
δ→0

PCL and solving for λ∗, we obtain a single non-negative root in [0, λ̄∗],

λ∗ =
1−µ(1−2σ)−

√
(1−µ)((1−µ)+4µ(1−2σ/k)σ)

2+(k−2)µ
.

We now show that any δ ∈ (0, δ∗] is an optimal delay length to maximize volume at Exchange

Slow, conditional on β > 1−2/k
1−λ∗ . Let Exchange Slow operate as a stand-alone exchange, and as
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such, maximizes only its own volume:

(98) VolumeSlow = µγ̄∗(1− β∗) + (1− µ)(λ̄∗ − λ∗).

From the proof of Proposition 4, we know that µγ̄∗(1 − β∗) = (1 − µ)λ∗ for δ ∈ (0, δ∗], which

implies that VolumeSlow = (1 − µ)λ̄∗, a constant. Then, for δ ∈ (δ∗, 1], we know λ∗ = 0 and

β∗ = 1, implying that again that VolumeSlow = (1 − µ)λ̄∗, which is decreasing in λ̄∗ for all

δ ∈ (δ∗, 1]. Thus, any δ ∈ (0, δ∗] maximizes delayed exchange volume.

Then, by Lemma 1, λ̄B = 2/k = λ̄∗ |δ>0, and β∗ = 1−2/k
1−λB

. Thus, a stand-alone exchange elects

to introduce a delay for any (1− β∗) < 2/k−λB
1−λB

⇐⇒ β∗ > 1−2/k
1−λB

.

Proof (Proposition 7). Let Exchange Slow operate as a subsidiary of Exchange Fast. Then,

Exchange Slow will set a delay δ, such that the sum of all volume across the delayed and standard

exchanges is maximized. From Proposition 4, recall that total exchange volume is increasing for

all δ. Thus, we have that the optimal delay is δ = 1 for all δ ∈ (0, 1].

Now, let δ = 0. Recall that total exchanged-traded volume in the benchmark case VolumeB is

invariant for all βB = αB, as:

VolumeB = µγ̄B(βB + (1− βB)) + (1− µ)(αBPr(λi ≥ λB) + (1− αB)Pr(λi ≥ λB))(99)

= µγ̄B + (1− µ)(1− λB).(100)

Then, because total volume is invariant in the initial market shares of Exchanges Fast and Slow,

and there exists a unique βB such that the limit of β∗ → βB as δ → 0, it must be that VolumeB <

Volume |δ=1. Hence, a subsidiary exchange would always impose δ = 1 to maximize total

exchange-traded volume.
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Figure 2: Model Timeline

This figure illustrates the timing of events upon an investor’s arrival at t = 0, until their payoff is realized at
t = 3.
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Figure 4: Quoted Spreads

The plot below presents the quoted half-spreads for Exchanges Fast and Slow at t = 1, as a function of the
latency delay δ. The solid line graphs askFast∗

1 , while the dash-dot line graphs askSlow∗
1 . A vertical dotted line

marks δ∗: for all δ > δ∗, informed speculators use only Exchange Fast. A horizontal wide-spaced dashed
line marks the benchmark value. Parameters µ = 0.5, k = 3, σ = 1. Results for other values of µ, k and σ
are qualitatively similar.
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